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 NUMBER SYSTEM 
  

 Natural Numbers : 

 The simplest numbers are 1, 2, 3, 4....... the numbers being used in counting. These are called natural numbers. 

 Whole numbers :  

 The natural numbers along with the zero form the set of whole numbers i.e. numbers 0, 1, 2, 3, 4 are whole 
numbers. W = {0, 1, 2, 3, 4....} 

 Integers : 

 The natural numbers, their negatives and zero make up the integers. 

  Z = {....–4, –3, –2, –1, 0, 1, 2, 3, 4,....} 

 The set of integers contains positive numbers, negative numbers and zero.         

 Rational Number : 

 (i) A rational number is a number which can be put in the form 
q

p
, where p and q are both integers and  q  0. 

 (ii) A rational number is either a terminating or non-terminating and recurring (repeating) decimal. 

 (iii) A rational number may be positive, negative or zero. 

 Complex numbers : 

 Complex numbers are imaginary numbers of the form a + ib, where a and b are real numbers and  

i = 1– ,  which is an imaginary number. 

 Factors : 

 A number is a factor of another, if the former exactly divides the latter without leaving a remainder (remainder is 
zero) 3 and 5 are factors of 12 and 25 respectively. 
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 Multiples : 

 A multiple is a number which is exactly divisible by another, 36 is a multiple of 2, 3, 4, 9 and 12. 

 Even Numbers :  

 Integers which are multiples of 2 are even number (i.e.) 2,4, 6, 8............... are even numbers. 

 Odd numbers :  

 Integers which are not multiples of 2 are odd numbers. 

 Prime and composite Numbers : 

 All natural number which cannot be divided by any number other than 1 and itself is called a prime number. By 
convention, 1 is not a prime number. 2, 3, 5, 7, 11, 13, 17 ............. are prime numbers. Numbers which are not 
prime are called composite numbers. 

 The Absolute Value (or modulus) of a real Number : 

 If a is a real number, modulus a is written as |a| ; |a| is always positive or zero.It means positive value of ‘a’ 
whether a is positive or negative 

 |3| = 3 and |0| = 0, Hence |a| = a ; if a = 0 or  a > 0 (i.e.) a  0 

 |–3| = 3 = – (–3) . Hence |a| = – a when a < 0 

 Hence, |a| = a, if a > 0 ;  |a| = – a, if a < 0 

 Irrational number :  

 (i)  A number is irrational if and only if its decimal representation is non-terminating and non-repeating. e.g. 2 , 

3 , ................ etc.  

 (ii) Rational number and irrational number taken together form the set of real numbers. 

 (iii) If a and b are two real numbers, then either  
(i) a > b or (ii) a =  b or (iii)  a < b 

 (iv) Negative of an irrational number is an irrational number. 

 (v) The sum of a rational number with an irrational number is always irrational. 

 (vi) The product of a non-zero rational number with an irrational number is always an irrational number. 

 (vii) The sum of two irrational numbers is not always an irrational number. 

 (viii) The product of two irrational numbers is not always an irrational number. 

 In division for all rationals of the form  

q

p
(q  0), p & q are integers, two things can happen either the remainder becomes zero or never becomes zero. 

 Type (1) :  Eg : 
8

7
 = 0.875   

     70 
64 
  60 
  56 
    40 
    40 
     × 

8 0.875   

 This decimal expansion 0.875 is called terminating.   
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 If remainder is zero then decimal expansion ends (terminates) after finite number of steps. These decimal 
expansion of such numbers terminating.  

 Type (2) : 

 Eg : 
3

1
 = 0.333………. 

        = 3.0   

   10 
  9 
  10 
    9  
    1…… 

3 0.33…… 

   

 

or 
7

1
 = 0.142857142857…..  

          = 142857.0  

      

 10 
  7 
  30 
  28  
    20 
    14 
      60 
      56 
        40 
        35 
          50 
          49 
            1…. 

7 0.14285…. 

  

 In both examples remainder is never becomes zero so the decimal expansion is never ends after some or infinite 
steps of division. These type of decimal expansions are called non terminating.  

 In above examples, after Ist step & 6 steps of division (respectively) we get remainder equal to dividend so 
decimal expansion is repeating (recurring). 

 So these are called non terminating recurring decimal expansions.  

 Both the above types (1 & 2) are rational numbers. 

 Types (3) :   

 Eg :The decimal expansion 0.327172398……is not ends any where, also there is no arrangement of digits (not 
repeating) so these are called non terminating not recurring.   

 These numbers are called irrational numbers. 

 Eg. :    

 0.1279312793         rational          terminating  

 0.1279312793….    rational           non terminating  

 or 12793.0                               & recurring 

 0.32777    rational   terminating 

 732.0  or    rational   non terminating 
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 0.32777…….      & recurring  

 0.5361279   rational   terminating  

 0.3712854043…. irrational   non terminating  

         non recurring 

 0.10100100010000 rational  terminating 

 0.10100100010000….   irrational  non terminating 

         non recurring. 

 

Rational no. Irrational no. 

If remainder = 0 If remainder  0 

Terminating 
& 

Non repeating 

Non terminating 
& 

repeating (recurring) 

& rem. = devidend 

If remainder  0 

& rem.  any devidend 

Non terminating 
non repeating 

Real Numbers 

  

Eg : 6.3
5

18
         Eg : ....33.0

3

1
 ..        Eg : 0.671234….. 

                                            = 3.0            Eg : 1.343634003908…... 
 

EXAMPLES 
 

Ex.1 Insert a rational and an irrational number between 2 and 3. 

Sol.  If a and b are two positive rational numbers such that ab is not a perfect square of a rational number, then 

ab  is an irrational number lying between a and b. Also, if a,b are rational numbers, then 
2

ba 
 is a rational 

number between them. 

   A rational number between 2 and 3 is  

   
2

32 
 = 2.5    

  An irrational number between 2 and 3 is  

  32  = 6   

Ex.2 Find two irrational numbers between 2 and 2.5. 

Sol.  If a and b are two distinct positive rational numbers such that ab is not a perfect square of a rational number, 

then ab  is an irrational number lying between a and b. 

   Irrational number between 2 and 2.5 is  

   5.22  = 5  

  Similarly, irrational number between 2 and 5  is 52  

  So, required numbers are 5  and 52 . 
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Ex.3 Find two irrational numbers lying between  

2  and 3 . 

Sol.  We know that, if a and b are two distinct positive irrational numbers, then ab  is an irrational number lying 

between a and b. 

   Irrational number between 2  and 3  is 32   = 6  = 61/4  

  Irrational number between 2  and 61/4 is 4/162   = 21/4 × 61/8. 

  Hence required irrational number are 61/4 and  

  21/4 × 61/8.       

Ex.4 Find two irrational numbers between 0.12 and 0.13.  

Sol.  Let a = 0.12 and b = 0.13. Clearly, a and b are rational numbers such that a < b.  

  We observe that the number a and b have a 1 in the first place of decimal. But in the second place of decimal 
a has a 2 and b has 3. So, we consider the numbers  

     c = 0.1201001000100001 ...... 

  and,     d = 0.12101001000100001....... 

  Clearly, c and d are irrational numbers such that a < c < d < b.   

  Theorem : Let p be a prime number. If p divides a2, then p divides a, where a is a positive integer.  

  Proof : Let the prime factorisation of a be as follows : 

  a = p1p2…..pn, where p1,p2,…..pn are primes, not necessarily distinct. 

  Therefore,  

  a2 = (p1p2…..pn) (p1p2 ….. pn) = 2
2

2
1 pp ….. 2

np . 

  Now, we are given that p divides a2. Therefore, from the Fundamental Theorem of Arithmetic, it follows that 
p is one of the prime factors of a2. However, using the uniqueness part of the Fundamental Theorem of 
Arithmetic, we realise that the only prime factors of a2 are p1, p2,…, pn. So p is one of p1, p2,……, pn. 

  Now, since a = p1 p2 …… pn, p divides a.  

  We are now ready to give a proof that 2  is irrational. 

  The proof is based on a technique called ‘proof by contradiction’.  

Ex.5 Prove that 

  (i) 2  is irrational number  

  (ii) 3  is irrational number 

  Similarly 11,7,5 …... are irrational numbers. 

Sol.  (i) Let us assume, to the contrary, that 2  is rational. 

  So, we can find integers r and s ( 0) such that .
s

r
2   

  Suppose r and s not having a common factor other than 1. Then, we divide by the common factor to get 

,
b

a
2   where a and b are coprime. 
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  So, 2b  = a. 

  Squaring on both sides and rearranging, we get 2b2 = a2. Therefore, 2 divides a2. Now, by Theorem  it 
following that 2 divides a. 

  So, we can write a = 2c for some integer c. 

  Substituting for a, we get 2b2 = 4c2, that is,  
b2 = 2c2. 

  This means that 2 divides b2, and so 2 divides b (again using Theorem  with p = 2). 

  Therefore, a and b have at least 2 as a common factor. 

  But this contradicts the fact that a and b have no common factors other than 1. 

  This contradiction has arisen because of our incorrect assumption that 2  is rational. 

  So, we conclude that 2  is irrational. 

 (ii) Let us assume, to contrary, that 3  is rational. That is, we can find integers a and b ( 0) such that 
b

a
3  .  

  Suppose a and b not having a common factor other than 1, then we can divide by the common factor, and 
assume that a and b are coprime.  

  So, a3b  . 

  Squaring on both sides, and rearranging, we get 3b2 = a2. 

  Therefore, a2 is divisible by 3, and by Theorem, it follows that a is also divisible by 3. 

  So, we can write a = 3c for some integer c. 

  Substituting for a, we get 3b2 = 9c2, that is,  
b2 = 3c2. 

  This means that b2 is divisible by 3, and so b is also divisible by 3 (using Theorem with p = 3). 

  Therefore, a and b have at least 3 as a common factor. 

  But this contradicts the fact that a and b are coprime. 

  This contradicts the fact that a and b are coprime. 

  This contradiction has arisen because of our incorrect assumption that 3  is rational. 

  So, we conclude that 3  is irrational.      

Ex.6 Prove that 37   is irrational 

Sol.  Method I : 

  Let 37   is rational number 

  
q

p
37    (p, q are integers, q  0) 

   3
q

p
7   

  
q

pq7
3


  
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  Here p, q are integers 

  
q

pq7 
 is also integer 

  LHS = 3  is also integer but this is contradiction that 3  is irrational so our assumption is wrong that 

)37(   is rational  

   37   is irrational   proved.  

  Method II : 

  Let 37   is rational  

  we know sum or difference of two rationals is also rational  

   )37(7   

  = 3  = rational  

  but this is contradiction that 3  is irrational  

   )37(   is irrational     proved. 

Ex.7 Prove that :   

  (i) 
3

5
   (ii) 72  are irrationals 

Sol. (i)  Let 
3

5
 is rational  

   










3

5
3  = 5  is rational  

  ( product of two rationals is also rational) 

  but this is contradiction that 5  is irrational 

  
3

5
 is irrational proved. 

 (ii) Let 72  is rational  

    7
2

1
)72(    

  ( division of two rational no. is also rational) 

    7  is rational  

   but this is contradiction that 7  is  

   irrational 

    72  is irrational      
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       proved 

  Theorem 1 :  

  Let x be a rational number whose decimal expansion terminates. Then x can be expressed in the form 
q

p
, 

where p and q are coprime and the prime factorization of q is of the form 2n5m, where n, m are non-negative 
integers. 

  (A) Numbers are terminating (remainder = zero) 

  Eg : 256.0
10

256

)52(

2

5

2

125

32
33

8

3

5




  

  Eg : 
2222

2

)10(

36

)52(

36

25

29

25

9








 36.0  

  So we can convert a rational number of the form 
q

p
, where q is of the form 2n5m to an equivalent rational 

number of the form 
b

a
 where b is a power of 10. These are terminates. 

OR  

  Theorem 2 :  

  Let x = 
q

p
 be a rational number, such that the prime factorization of q is of the form 2n 5m, where n, m are 

non-negative integers. Then x has a decimal expansion which terminates.  

  (B) Non terminating & recurring  

     Eg : 142857.0
7

1
 = 0.142857142857..... 

   Since denominator 7 is not of the form  
2n 5m so we zero (0) will not show up as a remainder. 

  Theorem 3 : 

  Let x = 
q

p
 be a rational number, such that the prime factorization of q is not of the form 2n5m, where n, m are 

non-negative integers. Then, x has a decimal expansion which is non-terminating repeating (recurring). 

  From the discussion above, we can conclude that the decimal expansion of every rational number is either 
terminating or non-terminating repeating. 

  Eg : From given rational numbers check terminating or non terminating  

  (1) 
555

5

5 )10(

)3213(

52

213

)5(

13

3125

13 





   

   = terminating   

  (2) 
33

3

3 )10(

12517

)52(

517

2

17

8

17 





   

   = terminating 
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  (3) 
1375

2

455

64 6


  ( we can not remove 7 & 13 from dinominator) non-terminating repeating ( no. is 

rational it is always repeating or recurring)     

  (4) 
6

5

24

5

24 10

53

10)52(

53

102

53

1600

15 









  

   = terminating  

  (5) 
3)7(

29

343

29
  = non terminating   

  (6) 
3323 )10(

523

)52(

523

52

23 





   

   = terminating  

  (7) 
575 752

129


 = 

57

2

7)52(

2433




  

   = non terminating ( 7 cannot remove from denominator)  

  (8) 
10

22

5

2

35

32

15

6 





   

   = terminating  

  (9) 
100

235

50

35 
  = terminating  

  (10) 
3527

117

307

117

210

77








  

   = non terminating      

 EUCLID’S DIVISION LEMMA OR 

EUCLID’S DIVISION ALGORITHM 



 

 For any two positive integers a and b, there exist unique integers q and r satisfying a = bq + r, where 0  r < b.  

 For Example  

 (i) Consider number 23 and 5, then: 

  23 = 5 × 4 + 3 

  Comparing with a = bq + r; we get: 

  a = 23, b = 5, q = 4, r = 3  

  and 0  r < b (as 0  3 < 5). 

 (ii) Consider positive integers 18 and 4. 

  18 = 4 × 4 + 2 

   For 18 (= a) and 4(= b) we have q = 4,  

   r = 2 and  0  r < b. 

  In the relation a = bq + r, where 0  r < b is nothing but a statement of the long division of number a by 
number b in which q is the quotient obtained and r is the remainder.  
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  Thus, dividend = divisor × quotient + remainder  a = bq + r 

 H.C.F. (Highest Common Factor)  

 The H.C.F. of two or more positive integers is the largest positive integer that divides each given positive number 
completely. 

 i.e., if positive integer d divides two positive integers a and b then the H.C.F. of a and b is d. 

 For Example 

 (i) 14 is the largest positive integer that divides 28 and 70 completely; therefore H.C.F. of 28 and 70 is 14. 

 (ii) H.C.F. of 75, 125 and 200 is 25 as 25 divides each of 75, 125 and 200 completely and so on. 

 Using Euclid’s Division Lemma For Finding H.C.F. 

 Consider positive integers 418 and 33. 

 Step-1  

  Taking bigger number (418) as a and smaller number (33) as b  

  express the numbers as a = bq + r 

   418 = 33 × 12 + 22 

 Step-2  

  Now taking the divisor 33 and remainder 22; apply the Euclid’s division algorithm to get: 

  33 = 22 × 1 + 11   [Expressing as a = bq + r] 

 Step-3  

  Again with new divisor 22 and new remainder 11; apply the Euclid’s division algorithm to get: 

  22 = 11 × 2 + 0  

 Step-4  

  Since, the remainder = 0 so we cannot proceed further. 

 Step-5  

  The last divisor is 11 and we say H.C.F. of 418 and 33 = 11 

Verification : 

(i) Using factor method:  

  Factors of 418 = 1, 2, 11, 19, 22, 38, 209 and 418 and,  

 Factor of 33 = 1, 3, 11 and 33.  

 Common factors = 1 and 11 

  Highest common factor = 11 i.e., H.C.F. = 11  

(ii) Using prime factor method:  

 Prime factors of 418 = 2, 11 and 19. 

 Prime factors of 33 = 3 and 11.  

   H.C.F. = Product of all common prime factors  = 11. For any two positive integers a and b which can 
be expressed as a = bq + r, where 0  r < b, the, H.C.F. of (a, b) = H.C.F. of (q, r) and so on. For number 418 and 
33 

   418 = 33 × 12 + 22 

   33 = 22 × 1 + 11 
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 and   22 = 11 × 2 + 0 

  H.C.F. of (418, 33) = H.C.F. of (33, 22) 

          = H.C.F. of (22, 11) = 11. 

 EXAMPLES  

Ex.8 Using Euclid’s division algorithm, find the H.C.F. of      
 [NCERT]  

  (i) 135 and 225  (ii) 196 and 38220 

  (iii) 867 and 255 

Sol.(i)   Starting with the larger number i.e., 225, we get:  

   225 = 135 × 1 + 90 

  Now taking divisor 135 and remainder 90, we get   135 = 90 × 1 + 45 

  Further taking divisor 90 and remainder 45, we get  90 = 45 × 2 + 0 

   Required H.C.F. = 45   (Ans.) 

 (ii) Starting with larger number 38220, we get: 

     38220 = 196 × 195 + 0 

  Since, the remainder is 0 

     H.C.F. = 196   (Ans.) 

 (iii) Given number are 867 and 255 

    867 = 255 × 3 + 102 (Step-1) 

     255 = 102 × 2 + 51 (Step-2) 

     102 = 51 × 2 + 0  (Step-3)  

     H.C.F. = 51        (Ans.) 

Ex.9 Show that every positive integer is of the form 2q and that every positive odd integer is of the from 2q + 1, 
where q is some integer. 

Sol.  According to Euclid’s division lemma, if a and b are two positive integers such that a is greater than b; then 
these two integers can be expressed as 

   a = bq + r; where 0  r < b 

  Now consider  

   b = 2; then a = bq + r will reduce to  

   a = 2q + r; where 0  r < 2,  

  i.e., r = 0 or r = 1 

  If  r = 0, a = 2q + r  a = 2q  

  i.e., a is even 

  and, if   r = 1, a = 2q + r  a = 2q + 1  

  i.e., a is add; 

  as if the integer is not even; it will be odd. 

  Since, a is taken to be any positive integer so it is applicable to the every positive integer that when it can be 
expressed as 
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    a = 2q 

   a is even and when it can expressed as  

  a = 2q + 1; a is odd. 

     Hence the required result.  

Ex.10 Show that any positive odd integer is of the form 4q + 1 or 4q + 3, where q is some integer. 

Sol.  Let a is b be two positive integers in which a is greater than b. According to Euclid’s division algorithm; a and 
b can be expressed as 

  a = bq + r, where q is quotient and r is remainder and 0  r < b.  

  Taking b = 4, we get: a = 4q + r,  

  where 0  r < 4 i.e., r = 0, 1, 2 or 3 

  r = 0  a = 4q, which is divisible by 2 and so is even.   

  r = 1  a = 4q + 1, which is not divisible by 2 and so is odd.     

  r = 2  q = 4q + 2, which is divisible by 2 and so is even.    

     and r = 3  q = 4q + 3, which is not divisible by 2 and so is odd. 

     Any positive odd integer is of the form 

  4q + 1 or 4q + 3; where q is an integer.  

      Hence the required result. 

Ex.11 Show that one and only one out of n; n + 2 or  
n + 4 is divisible by 3, where n is any positive integer.                                                                         

Sol.  Consider any two positive integers a and b such that a is greater than b, then according to Euclid’s division 
algorithm: 

  a = bq + r; where q and r are positive integers and 0  r < b 

  Let a = n and b = 3, then 

  a = bq + r  n = 3q + r; where 0  r < 3. 

  r = 0  n = 3q + 0 = 3q 

  r = 1  n = 3q + 1 and r = 2  n = 3q + 2 

  If n = 3q; n is divisible by 3 

  If n = 3q + 1; then n + 2 = 3q + 1 + 2  

    = 3q + 3; which is divisible by 3 

     n + 2 is divisible by 3  

  If n = 3q + 2; then n + 4 = 3q + 2 + 4 

    = 3q + 6; which is divisible by 3  

     n + 4 is divisible by 3   

  Hence, if n is any positive integer, then one and only one out of n, n + 2 or n + 4 is divisible by 3.   

      Hence the required result. 

Ex.12 Show that any positive integer which is of the form 6q + 1 or 6q + 3 or 6q + 5 is odd, where q is some 
integer. 
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Sol.  If a and b are two positive integers such that a is greater than b; then according to Euclid’s division 
algorithm; we have 

  a = bq + r; where q and r are positive integers and 0  r < b. 

  Let b = 6, then 

  a = bq + r  a = 6q + r; where 0  r < 6. 

  When r = 0  a = 6q + 0 = 6q;  

  which is even integer 

  When r = 1  a = 6q + 1   

  which is odd integer  

  When r = 2  a = 6q + 2  which is even. 

  When r = 3  a = 6q + 3  which is odd. 

  When r = 4  a = 6q + 4  which is even. 

  When r = 5  a = 6q + 5  which is odd. 

  This verifies that when r = 1 or 3 or 5; the integer obtained is 6q + 1 or 6q + 3 or 6q + 5 and each of these 
integers is a positive odd number. 

      Hence the required result. 

Ex.13 Use Euclid’s Division Algorithm to show that the square of any positive integer is either of the form 3m or 
3m + 1 for some integer m.  

Sol.  Let a and b are two positive integers such that a is greater than b; then: 

  a = bq + r; where q and r are also positive integers and 0  r < b 

  Taking b = 3, we get: 

    a = 3q + r; where 0  r < 3 

   The value of positive integer a will be  
3q + 0, 3q + 1 or 3q + 2  

  i.e., 3q, 3q + 1 or 3q + 2. 

  Now we have to show that the squares of positive integers 3q, 3q + 1 and 3q + 2 can be expressed as 3m, or 
3m + 1 for some integer m. 

  Square of 3q = (3q)2  

  = 9q2 = 3(3q2) = 3m; 3 where m is some integer.  

  Square of 3q + 1 = (3q + 1)2 

  = 9q2 + 6q + 1  

  = 3(3q2 + 2q) + 1 = 3m + 1 for some integer m. 

  Square of 3q + 2 = (3q + 2)2 

  = 9q2 + 12q + 4  

  = 9q2 + 12q + 3 + 1 

  = 3(3q2 + 4q + 1) + 1 = 3m + 1 for some integer m. 

  The square of any positive integer is either of the form 3m or 3m + 1 for some integer m. 

      Hence the required result. 
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Ex.14 Use Euclid’s Division Algorithm to show that the cube of any positive integer is either of the 9m, 9m + 1 or 
9m + 8 for some integer  m. 

Sol.  Let a and b be two positive integers such that a is greater than b; then: 

  a = bq + r; where q and r are positive integers and 0  r < b. 

  Taking b = 3, we get: 

   a = 3q + r; where 0  r < 3 

   Different values of integer a are  

   3q, 3q + 1 or 3q + 2. 

  Cube of 3q = (3q)3 = 27q3 = 9(3q3) = 9m; where m is some integer. 

  Cube of 3q + 1 = (3q + 1)3 

   = (3q)3 + 3(3q)2 ×1 + 3(3q) × 12 + 13 

    [Q (q + b)3 = a3 + 3a2b + 3ab2 + 1]  

   = 27q3 + 27q2 + 9q + 1 

   = 9(3q3 + 3q2 + q) + 1 

   = 9m + 1; where m is some integer. 

  Cube of 3q + 2 = (3q + 2)3 

   = (3q)3 + 3(3q)2 × 2 + 3 × 3q × 22 + 23 

   = 27q3 + 54q2 + 36q + 8 

   = 9(3q3 + 6q2 + 4q) + 8 

   = 9m + 8; where m is some integer. 

    Cube of any positive integer is of the form 9m or 9m + 1 or 9m + 8. 

      Hence the required result. 

 

 THE FUNDAMENTAL THEOREM OF 

ARITHMETIC 

  

 Statement : Every composite number can be decomposed as a product prime numbers in a unique way, except 
for the order in which the prime numbers occur.   

 For example :  

 (i)  30 = 2 × 3 × 5, 30 = 3 × 2 × 5, 30 = 2 × 5 × 3 and so on. 

 (ii) 432 = 2 × 2 × 2 × 2 × 3 × 3 × 3 = 24 × 33      

      or 432 = 33 × 24.  

 (iii) 12600 = 2 × 2 × 2 × 3 × 3 × 5 × 5 × 7  

  = 23 × 32 × 52 × 7 

 In general, a composite number is expressed as the product of its prime factors written in ascending order of their 
values. 

 e.g., (i) 6615 = 3 × 3 × 3 × 5 × 7 × 7    

    = 33 × 5 × 72   

   (ii) 532400 = 2 × 2 × 2 × 2 × 5 × 5 × 11 × 11 × 11   
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 EXAMPLES  

Ex.15 Consider the number 6n, where n is a natural number. Check whether there is any value of n  N for which 6n 

is divisible by 7.   

Sol.  Since,  6 = 2 × 3; 6n = 2n × 3n 

   The prime factorisation of given number 6n       

   6
n
 is not divisible by 7.    (Ans) 

Ex.16 Consider the number 12n, where n is a natural number. Check whether there is any value of n  N for which 
12n ends with the digit zero. 

Sol.  We know, if any number ends with the digit zero it is always divisible by 5. 

   If 12n ends with the digit zero, it must be divisible by 5. 

  This is possible only if prime factorisation of 12n contains the prime number 5. 

  Now, 12 = 2 × 2 × 3 = 22 × 3  

   12n = (22 × 3)n = 22n × 3n  

  i.e., prime factorisation of 12n does not contain the prime number 5.  

   There is no value of n  N for which    

      12
n
 ends with the digit zero.    (Ans)  

 
  USING THE FACTOR TREE 

     

 EXAMPLES 

Ex.17 Find the prime factors of : 

  (i) 540  (ii) 21252  (iii) 8232  

 (i)    

3 

3 

3 

2 

  540  

  270  

  135  

   45  

   15  

    5  

2 

540 divided by 2 gives 270 

270 divided by 2 gives 135 

135 divided by 3 gives 45 

45 divided by 3 gives 15 

15 divided by 3 gives 5 

   

  5 is   a prime number and so cannot be further divided by any prime number  

   540 = 2 × 2 × 3 × 3 × 3 × 5 = 22 × 33 ×5 
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 (ii)   

11 

7 

3 

2 

 21252 

10626 

  5313 

 1771  

   253  

   23  

2                

   21252 = 2 × 2 × 3 × 7 × 11 × 23  

      = 22
 × 3 × 11 × 7 × 23. 

 (iii)       

7 

7 

3 

2 

2 

  8232 

 4116 

  2058 

 1029  

   343  

   49  

2 

    7  

   

   8232 = 2 × 2 × 2 × 3 × 7 × 7 × 7  

   = 23
 × 3 × 7

3
. 

Ex.18 Find the missing numbers a, b and c in the following factorisation: 

            

2 

2 

2     a  

    b  

    b  

    17  

 

  Can you find the number on top without finding the other ? 

Sol.   c = 17 × 2 = 34 

   b = c × 2 = 34 × 2 = 68 and 

   a = b × 2 = 68 × 2 = 136 

     i.e., a = 136, b = 68 and c = 34. (Ans) 

  Yes, we can find the number on top without finding the others. 

  Reason: The given numbers 2, 2, 2 and 17 are the only prime factors of the number on top and so the number 
on top = 2 × 2 × 2 × 17 = 136 
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 USING THE FUNDAMENTAL THEOREM OF 

ARITHMETIC TO FIND H.C.F. AND L.C.M. 



 

  

  EXAMPLES  

Ex.19 Find the L.C.M. and H.C.F. of the following pairs of integers by applying the Fundamental theorem of 
Arithmetic method i.e., using the prime factorisation method. 

  (i)   26 and 91 (ii) 1296 and 2520  

  (iii) 17 and 25 

Sol. (i)  Since, 26 = 2 × 13 and, 91 = 7 × 13     

   

 2    26  

  13  

  and 7    91  

  13   

   L.C.M. = Product of each prime factor with highest powers. = 2 × 13 × 7 = 182. (Ans) 

  i.e., L.C.M. (26, 91) = 182.      (Ans) 

  H.C.F. = Product of common prime factors with lowest powers. = 13.          

  i.e., H.C.F (26, 91) = 13.  

 (ii)  Since, 1296 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3 = 24 × 34   

  and,     2520 = 2 × 2 × 2 × 3 × 3 × 5 × 7 

             = 23 × 32 × 5 × 7 

     

 

3 

3 

3 

2 

2 

    648 

  324 

   162 

   81  

   27  

    9  

2 

    3  

  1296 2 

5 

3 

3 

2 

2 

  2520 

 1260 

   630 

  315  

   105  

    35  

2 

    7  

 

  L.C.M. = Product of each prime factor with  
       highest powers   

       = 24 × 34 × 5 × 7 = 45,360      

  i.e.,  L.C.M. (1296, 2520) = 45,360       (Ans) 

  H.C.F. = Product of common prime factors with lowest powers. 

   = 23 × 32 = 8 × 9 = 72 

  i.e., H.C.F. (1296, 2520) = 72.   (Ans) 

 (iii) Since,  17 = 17 

  and,  25 = 5 × 5 = 52  
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   L.C.M. = 17 × 52 = 17 × 25 = 425   

  and, H.C.F. = Product of common prime factors  with lowest powers 

  = 1, as given numbers do not have any common prime factor. 

  In example 19 (i) : 

  Product of given two numbers = 26 × 91  
= 2366 

  and, product of their  

  L.C.M. and H.C.F. = 182 × 13 = 2366   

   Product of L.C.M and H.C.F of two given numbers = Product of the given numbers 

  In example 19 (ii) : 

  Product of given two numbers  

    = 1296 × 2520 = 3265920 

  and, product of their  

  L.C.M. and H.C.F. = 45360 × 72 = 3265920   

  L.C.M. (1296, 2520) × H.C.F. (1296, 2520)  

  = 1296 × 2520 

  In example 19 (iii) : 

  The given numbers 17 and 25 do not have any common prime factor. Such numbers are called co-prime 
numbers and their H.C.F. is always equal to 1 (one), whereas their L.C.M. is equal to the product of the 
numbers. 

  But in case of two co-prime numbers also, the product of the numbers is always equal to the product of their 
L.C.M. and their H.C.F.  

  As, in case of co-prime numbers 17 and 25; 

  H.C.F. = 1; L.C.M. = 17 × 25 = 425; 

  product of numbers = 17 × 25 = 425 

  and product of their H.C.F. and L.C.M.  

  = 1 × 425 = 425.     

  

 
  For any two positive integers : 
  Their L.C.M. × their H.C.F.  

     = Product of the number  

   (i) L.C.M. = 
.F.C.H

numberstheofoductPr
 

     (ii) H.C.F. = 
.M.C.L

numberstheofoductPr
 

     (iii) One number = 
numberOther

.F.C.H.M.C.L 
 

 
 

Ex.20 Given that H.C.F. (306, 657) = 9,  

  find L.C.M. (306, 657) 
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Sol.  H.C.F. (306, 657) = 9 means H.C.F. of  

  306 and 657 = 9 

  Required L.C.M. (306, 657) means required L.C.M. of 306 and 657. 

  For any two positive integers; 

  their L.C.M. = 
.F.C.HTheir

numberstheofoductPr
 

  i.e., L.C.M. (306, 657) = 
9

657306 
 = 22,338. 

Ex.21 Given that L.C.M. (150, 100) = 300, find H.C.F. (150, 100)  

Sol.  L.C.M. (150, 100) = 300 

    L.C.M. of 150 and 100 = 300 

  Since, the product of number 150 and 100  

   = 150 × 100  

  And, we know :  

  H.C.F. (150, 100) = 
)100,150(.M.C.L

100and150ofoductPr
   

        = 
300

100150 
 = 50.  

Ex.22 The H.C.F. and L.C.M. of two numbers are 12 and 240 respectively. If one of these numbers is 48; find the 
other numbers. 

Sol.  Since, the product of two numbers  

   = Their H.C.F. × Their L.C.M. 

   One no. × other no. = H.C.F. × L.C.M. 

 Other no. = 
48

24012 
 = 60.  

23 Explain why 7 × 11 × 13 + 13 and  

  7 × 6 × 5 × 4 × 3 + 5 are composite numbers.  

Sol.  Since,   

  7 × 11 × 13 + 13 = 13 × (7 × 11 + 1) 

   = 13 × 78 = 13 × 13 × 3 × 2;  

  that is, the given number has more than two factors and it is a composite number.  

  Similarly, 7 × 6 × 5 × 4 × 3 + 5 

   = 5 × (7 × 6 × 4 × 3 + 1) 

   = 5 × 505 = 5 × 5 × 101 

  The given no. is a composite number.     
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 INTRODUCTION 
  

  Algebra is that branch of mathematics which 

treats the relation of numbers.  

 CONSTANTS AND VARIABLES 
  

 In algebra, two types of symbols are used: 

constants and variable (literals). 

 Constant :  

 It is a symbol whose value always remains the 

same, whatever the situation be. 

  For example: 5, –9, 
8

3
, , 

15

7
, etc.     

 Variable :   

 It is a symbol whose value changes according to 

the situation.   

 For example : x, y, z, ax, a + x, 5y, – 7x, etc. 

 ALGEBRAIC EXPRESSION 
  

(a) An algebraic expression is a collection of terms 

separated by plus (+) or minus (–) sign. For 

example : 3x + 5y, 7y – 2x, 2x – ay + az, etc.         

(b) The various parts of an algebraic expression that 

are separated by ‘+’ or ‘–’ sign are called terms. 

 For example : 

  Algebraic  No. of  Terms 

  expression    terms 

 (i) –32x    1  –32x 

 (ii) 2x + 3y    2  2x and 3y 

 (iii) ax – 5y + cz   3  ax, –5y and cz 

 (iv) 
x

3
 + 

7

y – 
8

xy
 + 9 4  

x

3
, 

7

y
, –

8

xy
   

         and 9 & so on. 

Types of Algebraic Expressions :  

 (i) Monomial : An algebraic expression having 

only one term is called a monomial. For ex. 

8y, –7xy, 4x2, abx, etc. ‘mono’ means ‘one’. 

 (ii) Binomial : An algebraic expression having 

two terms is called a binomial. For ex.  

8x + 3y, 8x + 3, 8 + 3y, a + bz, 9 – 4y,  

2x2 – 4z, 6y2 – 5y, etc. ‘bi’ means ‘two’.  

 (iii)  Trinomial : An algebraic expression having 

three terms is called a trinomial. For ex.  

ax – 5y + 8z, 3x2 + 4x + 7, 9y2 – 3y + 2x, etc.  

‘tri means ‘three’. 

 (iv) Multinomial : An algebraic expression 

having two or more terms is called a 

multinomial.     

 

CONTENTS 

 Introduction 

  Constants & Variables 

  Algebraic Expression 

  Factors & Coefficients 

  Degree of a  Polynomial 

  Types of Polynomial & Polynomial 

in one variable 

  Remainder Theorem 

 Values & Zeroes of a Polynomial 

 Geometric Meaning of the Zeroes of 

a Polynomial 

 Relation between Zeroes & Coefficients 

 Formation of Quadratic Polynomial 
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 FACTORS AND COEFFICIENTS 
 

 Factor :   

 Each combination of the constants and variables, 

which form a term, is called a factor.   

 For examples : 

 (i) 7, x and 7x are factors of 7x, in which  

7 is constant (numerical) factor and x is 

variable (literal) factor. 

 (ii) In –5x2y, the numerical factor is –5 and literal 

factors are : x, y, xy, x2 and x2y. 

 Coefficient :  

 Any factor of a term is called the coefficient of 

the remaining term. 

 For example : 

 (i) In 7x ; 7 is coefficient of x  

 (ii) In –5x2y; 5 is coefficient of –x2y; –5 is 

coefficient of x2y.   

Ex. 1  Write the coefficient of :      

  (i) x2 in 3x3 – 5x2 + 7 

  (ii) xy in 8xyz 

  (iii) –y in 2y2 – 6y + 2 

  (iv) x0 in 3x + 7 

Sol.  (i) –5  

  (ii) 8z  

  (iii) 6 

  (iv)  Since x0 = 1, Therefore  

   3x + 7 = 3x + 7x0   

      coefficient of x0 is 7.

  DEGREE OF A POLYNOMIAL 
   

 The greatest power (exponent) of the terms of a 

polynomial is called degree of the polynomial.  

 For example :    

 (a) In polynomial 5x2 – 8x7 + 3x : 

  (i) The power of term 5x2 = 2 

  (ii) The power of term –8x7 = 7 

  (iii) The power of 3x = 1 

 Since, the greatest power is 7, therefore degree of 

the polynomial 5x2 – 8x7 + 3x is 7 

 

 (b) The degree of polynomial : 

  (i) 4y3 – 3y + 8 is 3  

  (ii)  7p + 2 is 1(p = p1) 

  (iii) 2m – 7m8 + m13 is 13 and so on.  

EXAMPLES 

Ex.2 Find which of the following algebraic 

expression is a polynomial.    

  (i) 3x2 – 5x   (ii) x + 
x

1
     

  (iii) y – 8   (iv) z5 – 3 z  + 8  

Sol.  (i)  3x2 – 5x = 3x2 – 5x1 

   It is a polynomial. 

  (ii) x + 
x

1
 = x1 + x–1 

   It is not a polynomial. 

  (iii) y – 8 = y1/2 – 8    

  Since, the power of the first term ( y ) is 

2

1
, which is not a whole number.  

  (iv) z5 – 3 z  + 8 = z5 – z1/3 + 8 

  Since, the exponent of the second term is  

1/3, which in not a whole number. Therefore, 

the given expression is not a polynomial. 

Ex.3 Find the degree of the polynomial : 

  (i) 5x – 6x3 + 8x7 + 6x2 

  (ii) 2y12 + 3y10 – y15 + y + 3 

  (iii) x  

  (iv)  8  

Sol.  (i) Since the term with highest exponent 

(power) is 8x7 and its power is 7. 

    The degree of given polynomial is 7. 

  (ii) The highest power of the variable is 15 

    degree = 15. 

  (iii) x = x1    degree is 1. 

  (iv) 8 = 8x0  degree = 0 
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  TYPES OF POLYNOMIALS 
 

(A) Based on degree : 

 If degree of polynomial is 

 Examples 

1. One   Linear x + 3, y – x + 2, 3 x –3 

2. Two Quadratic 
2x

2
 –7,

3

1
x

2
+y

2
 –2xy, x

2
 +1+ 3y 

 

3. 

 

Three 

 

Cubic 

 

x
3
 + 3x

2
 –7x+8, 2x

2
+5x

3
+7, 

 

4. 

 

Four 

 

bi-quadratic 

 

x
4
 + y

4
 + 2x

2
y

2
, x

4
 + 3,…  

(B) Based on Terms : 

 If number of terms in polynomial is  

 Examples 

1. One Monomial 
7x, 5x

9
, 

3

7
x

16, xy, …… 

 

2. 

 

Two 

 

Binomial 

 

2 + 7y
6
, y

3
 + x

14
, 7 + 5x

9,… 
 

3. 

 

Three 

 

Trinomial 

 

x
3
 –2x + y, x

31
+y

32
+ z

33,….. 

Note : (1)  Degree of constant polynomials  

     (Ex.5, 7, –3, 8/5, …) is zero. 

    (2) Degree of zero polynomial (zero = 0  

= zero polynomial) is not defined. 

  POLYNOMIAL IN ONE VARIABLE 
 

 If a polynomial has only one variable then it is 

called polynomial in one variable. 

Ex. P(x) = 2x
3
 + 5x – 3  Cubic trinomial 

 Q(x) = 7x
7
 – 5x

5
 – 3x

3
 + x + 3 polynomial of 

      degree 7 

 R(y) = y    Linear, monomial 

 S(t) = t
2
 + 3   Quadratic Binomial  

 Note : General form of a polynomial in one 

variable x of degree 'n' is anx
n
 + an–1x

n–1 
+ an–2x

n–2
 

+ ….+ a2x
2
 + a1x + a0, an  0, where an, an–1,… a2, 

a1, a0 all are constants. 

   for linear  ax + b,     a  0  

  for quadratic  ax
2
 + bx + c,     a  0 

  for cubic  ax
3
 + bx

2
 + cx + d, a  0 

 REMAINDER THEOREM    

(i) Remainder obtained on dividing polynomial p(x) 

by x – a is equal to p(a) . 

(ii) If a polynomial p(x) is divided by (x + a) the 

remainder is the value of p(x) at x = –a. 

(iii) (x – a) is a factor of polynomial p(x) if p(a) = 0    

(iv)   (x + a) is a factor of polynomial p(x) if p(–a) = 0 

(v) (x – a) (x – b) is a factor of polynomial p(x),  

     if p(a) = 0 and p(b) = 0.    

EXAMPLES 

Ex.4 Find the remainder when 4x3 – 3x2 + 2x – 4 is 

divided by  

  (a) x – 1  (b) x + 2  (c) x + 
2

1
   

Sol.  Let p(x) =  4x3 – 3x2 + 2x – 4 

  (a)  When p(x)  is divided by (x – 1), then by 

remainder theorem, the required 

remainder will be p(1)  

   p(1) = 4 (1)3 – 3(1)2 + 2(1) – 4 

   = 4 × 1 – 3 × 1 + 2 × 1 – 4  

   = 4 – 3 + 2 – 4 = – 1 

  (b) When p(x) is divided by (x + 2), then by 

remainder theorem, the required 

remainder will be p (–2).  

   p(–2) = 4 (–2)3 – 3 (–2)2 + 2(–2) – 4 

   = 4 × (–8) – 3 × 4 – 4 – 4 

   = – 32 – 12 – 8 = – 52 

  (c) When p(x) is divided by, 





 

2

1
x  then by 

remainder theorem, the required 

remainder will be  

   p 







2

1
 = 4

3

2

1






  – 3

2

2

1






   + 2 








2

1
 – 4  

   = 4 × 







8

1
 – 3 × 

4

1
 – 2 ×

2

1 – 4 

   = –
2

1 – 
4

3 – 1– 4 = 
2

1 – 
4

3 – 5  

   = 
4

2032 
 = 

4

25
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  VALUES OF A POLYNOMIAL 
   For a polynomial f(x) = 3x2 – 4x + 2. 

 To find its value at x = 3;  

 replace x by 3 everywhere. 

 So, the value of f(x) = 3x2 – 4x + 2 at x = 3 is  

 f(3) = 3 × 32 – 4 × 3 + 2  

 = 27 – 12 + 2 = 17. 

 Similarly, the value of polynomial  

 f(x) = 3x2 – 4x + 2, 

 (i) at x = –2 is f(–2) = 3(–2)2 –4(–2) + 2 

    = 12 + 8 + 2 = 22 

 (ii) at x = 0 is f(0) = 3(0)2 – 4(0) + 2 

    = 0 – 0 + 2 = 2 

 (iii) at x = 
2

1
 is f 








2

1
 = 3

2

2

1






 – 4 








2

1
 + 2 

    = 
4

3
 – 2 + 2 = 

4

3
     

Ex.5    Find the value of the polynomial 5x – 4x2
 + 3 

at: 

  (i) x = 0    (ii) x = –1 

Sol.  Let p(x) = 5x – 4x2 + 3. 

  (i) At x = 0, p(0) = 5 × 0 – 4 × (0)2 + 3  

           = 0 – 0 + 3 = 3 

  (ii) At x = –1, p(–1) = 5(–1) – 4(–1)2 + 3 

           = –5 – 4 + 3 = – 6      

  ZEROES OF A POLYNOMIAL 
 

 If for x = a, the value of the polynomial p(x) is 0 

i.e., p(a) = 0; then x = a is a zero of the 

polynomial p(x). 

 For example : 

 (i) For polynomial p(x) = x – 2; p(2) = 2 – 2 = 0 

  x = 2 or simply 2 is a zero of the polynomial  

  p(x) = x – 2. 

 (ii) For the polynomial g(u) = u2 – 5u + 6; 

  g(3) = (3)2 – 5 × 3 + 6 = 9 – 15 + 6 = 0  

  3 is a zero of the polynomial g(u)  

  = u2 – 5u + 6. 

  Also, g(2) = (2)2 – 5 × 2 + 6 = 4 – 10 + 6 = 0 

  2 is also a zero of the polynomial  

  g(u) = u2 – 5u + 6 

  (a) Every linear polynomial has one and only 

one zero. 

  (b) A given polynomial may have more than 

one zeroes. 

  (c) If the degree of a polynomial is n; the 

largest number of zeroes it can have is 

also n. 

   For example :  

   If the degree of a polynomial is 5, the 

polynomial can have at the most 5 

zeroes; if the degree of a polynomial is 8; 

largest number of zeroes it can have is 8. 

  (d) A zero of a polynomial need not be 0. 

   For example : If f(x) = x2 – 4,  

   then f(2) = (2)2 – 4 = 4 – 4 = 0 

   Here, zero of the polynomial f(x) = x2 – 4 

is 2 which itself is not 0. 

  (e) 0 may be a zero of a polynomial. 

   For example : If f(x) = x2 – x,  

   then f(0) = 02 – 0 = 0 

   Here 0 is the zero of polynomial  

   f(x) = x2 – x. 

EXAMPLES 

Ex.6 Verify whether the indicated numbers are 

zeroes of the polynomial corresponding to 

them in the following cases : 

  (i)  p(x) = 3x + 1, x = – 
3

1
  

  (ii)  p(x) = (x + 1) (x – 2), x = – 1, 2 

  (iii) p(x) = x2, x = 0 

  (iv) p(x) = x + m, x = – 


m
  

  (v) p(x) = 2x + 1, x = 
2

1
 

Sol.  (i) p(x) = 3x + 1 

    p 







3

1
 = 3 × –

3

1
 + 1 = –1 + 1 = 0 

    x = – 
3

1
 is a zero of p(x) = 3x + 1. 
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  (ii) p(x) = (x + 1) (x – 2) 

    p(–1) = (–1 + 1) (–1 – 2) = 0 × –3 = 0 

   and,  p(2) = (2 + 1) (2 – 2) = 3 × 0 = 0 

    x = –1 and x = 2 are zeroes of the 

given polynomial. 

  (iii) p(x) = x2   p(0) = 02 = 0 

    x = 0 is a zero of the given 

polynomial 

  (iv) p(x) = x + m p 








m
 =  









m
 + m 

   = – m + m = 0 

    x = – 


m
 is a zero of the given 

polynomial. 

  (v) p(x) = 2x + 1 p 







2

1
 = 2 × 

2

1
 + 1  

    = 1 + 1 = 2 0 

    x = 

2

1
 is not a zero of the given 

polynomial. 

Ex.7 Find the zero of the polynomial in each of the 

following cases : 

  (i) p(x) = x + 5   (ii) p(x) = 2x + 5 

  (iii) p(x) = 3x – 2 

Sol.  To find the zero of a polynomial p(x) means 

to solve the polynomial equation p(x) = 0. 

  (i) For the zero of polynomial p(x) = x + 5 

   p(x) = 0   x + 5 = 0  x = –5 

   x = –5 is a zero of the polynomial  

p(x) = x + 5. 

  (ii) p(x) = 0   2x + 5 = 0 

    2x = –5 and x = 
2

5
  

    x = 
2

5
 is a zero of p(x) = 2x + 5. 

  (iii) p(x) = 0  3x – 2 = 0  

    3x = 2 and x = 
3

2
. 

   x = 
3

2
 is zero of p(x) = 3x – 2 

 
 

GEOMETRIC MEANING OF THE ZEROES OF 

A POLYNOMIAL  

  

 Let us consider linear polynomial ax + b. The 

graph of y = ax + b is a straight line.  

 For example : The graph of y = 3x + 4 is a straight 

line passing through (0, 4) and (2, 10). 

BAsintPo

1044x3y

20x

  

 y 
B(2, 10) 

A(0, 4) 

O x' x  
    

   

 (i) Let us consider the graph of y = 2x – 4 

intersects the x-axis at x = 2. The zero 2x – 4 

is 2. Thus, the zero of the polynomial 2x – 4 

is the x-coordinate of the point where the 

graph y = 2x – 4 intersects the x-axis. 

BAsintPo

404x2y

02x

  

 

x' 

y' 

y 

x 

B 

O 

–1 

–2 

–3 

–4 

A 

 
 

 (ii) A general equation of a linear polynomial is  

ax + b. The graph of y = ax + b is a straight 

line which intersects the x-axis at 





 

0,
a

b
.  

  Zero of the polynomial ax + b is the x-

coordinate of the point of intersection of the 

graph with x-axis. 
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 (iii) Let us consider the quadratic polynomial  

x2 – 4x + 3. The graph of x2 – 4x + 3 intersects 

the x-axis at the point (1, 0) and (3, 0). Zeroes 

of the polynomial x2 – 4x + 3 are the  

x-coordinates of the points of intersection of 

the graph with x-axis. 

EDCBAsintPo

830103x4xy

54321x
2   

  The shape of the graph of the quadratic 

polynomials is  and the curve is known as 

parabola. 

 

x' x O 
–1 

–2 

A 

1 

B 

2 3 

C 

4 

D 

y 

y'  

 (iv) Now let us consider one more polynomial  

–x2 + 2x + 8. Graph of this polynomial 

intersects the x-axis at the points  

(4, 0), (–2, 0).  Zeroes of the polynomial –
x2 + 2x + 8 are the x-coordinates of the points 

at which the graph intersects the x-axis. The 

shape of the graph of the given quadratic 

polynomial is  and the curve is known as 

parabola. 

GFEDCBAsintPo

0789850y

4321012x 
 

 y 

1 

2 

3 

4 

5 

6 

7 
8 
9 

1 2 3 4 

G 
x x' 

–1 

–2 

–3 

y' 

O 

A 

B 

D 

E 

F 
C 

–4 

 

 

  The zeroes of a quadratic polynomial  

ax
2
 + bx + c he x-coordinates of the points 

where the graph of y = ax
2
 + bx + c intersects 

the x-axis.  

  Cubic polynomial : Let us find out 

geometrically how many zeroes a cubic has. 

  Let consider cubic polynomial  

  x3 – 6x2 + 11x – 6.  

IHGFEDCBAsintPo

6875.10375.00375.00875.166x11x6xy

45.335.225.115.00x
23 

 

  Case 1 : 

  The graph of the cubic equation intersects the  

x-axis at three points (1, 0), (2, 0) and (3, 0). 

Zeroes of the given polynomial are the  

x-coordinates of the points of intersection 

with the x-axis. 

 

6 

5 

4 

3 

2 

1 

–1 

–2 

–3 

–4 

–5 

–6 

–2 –1 0 1 2 3 

G 

4 5 6 
x 

I 

H 
E 

D 

C 

B 

A 

y' 

y 

x' 

F 

 

  Case 2 : 

  The cubic equation x3 – x2 intersects the x-

axis at the point (0, 0) and (1, 0). Zero of a 

polynomial x3 – x2 are the x-coordinates of 

the point where the graph cuts the x-axis. 

 

x 
O 

y' 

y 

x' 

 

  Zeroes of the cubic polynomial are 0 and 1. 



  Polynomials                                   22 

  Case 3 : 

    y = x3 

  Cubic polynomial has only one zero. 

 

x O 

y' 

y 

x' 

 

  In brief : A cubic equation can have 1 or 2 or 

3 zeroes or any polynomial of degree three 

can have at most three zeroes. 

  Remarks : In general, polynomial of degree 

n, the graph of y = p(x) passes x-axis at most 

at n points. Therefore, a polynomial p(x) of 

degree n has at most n zeroes. 

EXAMPLES  

Ex.8 Which of the following correspond to the 

graph to a linear or a quadratic polynomial 

and find the number of zeroes of polynomial. 

  (i) 

 

O 
y' 

y 

x x' 

     (ii) 

 

O 
y' 

y 

x x' 

 

  (iii) 

 

O 
y' 

y 

x x' 

   (iv) 

 

O 
y' 

y 

x x' 

 

  (v) 

 

O 
y' 

y 

x x' 

 (vi) 

 

O 

y' 

y 

x x' 

 

  (vii) 

 

O 

y' 

y 

x x' 

(viii)

 

x 
O 

y' 

y 

x' 

 

  (ix) 

 

O 

y' 

y 

x x' 
 (x) 

 

O 

y' 

y 

x x'  

Sol. (i) The graph is a straight line so the graph is of 

a linear polynomial. The number of zeroes is 

one as the graph intersects the x-axis at one 

point only. 

 (ii) The graph is a parabola. So, this is the graph 

of quadratic polynomial. The number of 

zeroes is zero as the graph does not intersect 

the x-axis. 

 (iii) Here the polynomial is quadratic as the graph 

is a parabola. The number of zeroes is one as 

the graph intersects the x-axis at one point 

only (two coincident points). 

 (iv) Here, the polynomial is quadratic as the graph 

is a parabola. The number of zeroes is two as 

the graph intersects the x-axis at two points. 

 (v) The polynomial is linear as the graph is 

straight line. The number of zeroes is zero as 

the graph does not intersect the x-axis. 

 (vi) The polynomial is quadratic as the graph is a 

parabola. The number of zeroes is 1 as the 

graph intersects the x-axis at one point (two 

coincident points) only. 

 (vii)The polynomial is quadratic as the graph is a 

parabola. The number of zeroes is zero, as the 

graph does not intersect the x-axis. 

 (viii) Polynomial is neither linear nor quadratic as 

the graph is neither a straight line nor a 

parabola is one as the graph intersects the x-

axis at one point only. 

 (ix) Here, the polynomial is quadratic as the graph 

is a parabola. The number of zeroes is one as 

the graph intersects the x-axis at one point 

only (two coincident points). 

 (x) The polynomial is linear as the graph is a 

straight line. The number of zeroes is one as 

the graph intersects the x-axis at only one 

point.

 


 

RELATIONSHIP BETWEEN THE ZEROES AND  

THE COEFFICIENTS OF A POLYNOMIAL. 
 

  Consider quadratic polynomial  

  P(x) = 2x2
 – 16x + 30. 
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 Now, 2x2 – 16x + 30 = (2x – 6) (x – 3)   

       = 2 (x – 3) (x – 5) 

 The zeroes of P(x) are 3 and 5. 

 Sum of the zeroes  

 = 3 + 5 = 8 = 
2

)16(
 = – 












2xoftcoefficien

xoftcoefficien
 

 Product of the zeroes  

 = 3 × 5 = 15 = 
2

30
 = 

2xoftcoefficien

termttancons
 

 So if  ax
2
 + bx + c,  a  0 is a quadratic 

polynomial and ,  are two zeroes of polynomial 

then 
a

c
,

a

b–   

 EXAMPLES  

Ex.9 Find the zeroes of the quadratic polynomial  

6x2 – 13x + 6 and verify the relation between 

the zeroes and its coefficients. 

Sol.  We have, 6x2 – 13x + 6 = 6x2 – 4x – 9x + 6 

  = 2x (3x – 2) –3 (3x – 2)  

  = (3x – 2) (2x – 3) 

  So, the value of 6x2 – 13x + 6 is 0, when  

(3x – 2) = 0 or (2x – 3) = 0 i.e.,  

  When  x = 
3

2
 or    

2

3
    

  Therefore, the zeroes of 6x2 – 13x + 6 are 

  
3

2
 and 

2

3
.   

  Sum of the zeroes  

  =
3

2
 + 

2

3
 = 

6

13
 = 

6

)13(
 =

2xoftcoefficien

xoftcoefficien
  

  Product of the zeroes  

  = 
3

2
 × 

2

3
 = 

6

6
 = 

2xoftcoefficien

termttancons
   

Ex.10 Find the zeroes of the quadratic polynomial  

4x2 – 9 and verify the relation between the 

zeroes and its coefficients. 

Sol.  We have, 

   4x2 – 9 = (2x)2 – 32 = (2x – 3) (2x + 3) 

  So, the value of 4x2 – 9 is 0, when  

   2x – 3 = 0  or  2x + 3 = 0  

  i.e., when   x = 
2

3
  or   x = –

2

3
.  

  Therefore, the zeroes of 4x2 – 9 are 
2

3
 & –

2

3
. 

  Sum of the zeroes 

  = 
2

3
 – 

2

3
 = 0 = 

4

)0(
 = 

2xoftcoefficien

xoftcoefficien
  

  Product of the zeroes  

  = 







2

3
 








2

3
 = 

4

9
 = 

2xoftcoefficien

termttancons
  

Ex.11 Find the zeroes of the quadratic polynomial  

9x2 – 5 and verify the relation between the 

zeroes and its coefficients. 

Sol.  We have,    

  9x2 – 5 = (3x)2 – ( 5 )2 = (3x – 5 ) (3x + 5 ) 

  So, the value of 9x2 – 5 is 0,  

  when 3x – 5  = 0 or 3x + 5  = 0 

  i.e., when x = 
3

5
 or   x = 

3

5
. 

  Sum of the zeroes 

  = 
3

5
 – 

3

5
 = 0 = 

9

)0(
 = 

2xoftcoefficien

xoftcoefficien
  

  Product of the zeroes  

  = 










3

5










 
3

5
 = 

9

5
 = 

2xoftcoefficien

termttancons
  

Ex.12 If  and  are the zeroes of ax2 + bx + c, a  0 

then verify the relation between the zeroes 

and its coefficients.  

Sol.  Since  and  are the zeroes of polynomial  

  ax2 + bx + c. 

  Therefore,  (x – ), (x – ) are the factors of 

the polynomial ax2 + bx + c.  

  ax2 + bx + c = k (x – ) (x – ) 

  ax2 + bx + c = k {x2 – ( + ) x + } 

        ax2 + bx + c = kx2 – k ( + ) x + k...(1) 

  Comparing the coefficients of x2, x and 

constant terms of (1) on both sides, we get  
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   a = k, b = – k ( + ) and c = k 

    +  = – 
k

b
 and    = 

k

c
 

   +  = 
a

b
  and    = 

a

c
   [ k = a] 

  Sum of the zeroes = 
a

b
 = 

2xoftcoefficien

xoftcoefficien
 

  Product of the zeroes = 
a

c
 =

2xoftcoefficien

termttancons
 

Ex. 13 Prove relation between the zeroes and the 

coefficient of the quadratic polynomial  

ax2 + bx + c. 

Sol.  Let  and  be the zeroes of the polynomial  

ax2 + bx + c 

    =  
a2

ac4bb 2 
   ....(1) 

    =  
a2

ac4bb 2 
   ....(2) 

  By adding (1) and (2), we get  

   +  = 
a2

ac4bb 2 
 + 

a2

ac4bb 2 
 

  = 
a2

b2
 = – 

a

b
 = 

2xoftcoefficien

xoftcoefficien
 

  Hence, sum of the zeroes of the polynomial  

ax2 + bx + c is – 
a

b
 

  By multiplying (1) and (2), we get 

    = 











 
a2

ac4bb 2













 
a2

ac4bb 2

 

   = 
2

222

a4

)ac4b()b( 
 = 

2

22

a4

ac4bb 
 

   = 
2a4

ac4
 = 

a

c
  

   = 
2xoftcoefficien

termttancons
  

   Hence, product of zeroes = 
a

c
 

 

 
 In general, it can be proved that if , ,  are the 

zeroes of a cubic polynomial ax3 + bx2 + cx + d, 

then  

    +  +  = 
a

b
 

    +  +  = 
a

c
 

    = 
a

d
 

 Note, 
a

b
, 

a

c
 and 

a

d
 are meaningful because a  0. 

   

Ex.14 find the zeroes of the quadratic polynomial  

x2 – 2x – 8 and verify a relationship between 

zeroes and its coefficients. 

Sol.  x2 – 2x – 8 = x2 – 4x + 2x – 8  

  = x (x – 4) + 2 (x – 4) = (x – 4) (x + 2) 

  So, the value of x2 – 2x – 8 is zero when  

x – 4 = 0 or x + 2 = 0 i.e., when x = 4 or x = – 2. 

  So, the zeroes of x2 – 2x – 8 are 4, – 2. 

  Sum of the zeroes  

  = 4 – 2 = 2 = 
1

)2(
 = 

2xoftcoefficien

xoftcoefficien
  

  Product of the zeroes  

  = 4 (–2) = –8 = 
1

8
 = 

2xoftcoefficien

termttancons
  

Ex.15 Verify that the numbers given along side of 

the cubic polynomials are their zeroes. Also 

verify the relationship between the zeroes and 

the coefficients. 2x3 + x2 – 5x + 2 ; 
2

1
, 1, – 2  

Sol.  Here, the polynomial p(x) is   

   2x3 + x2 – 5x + 2 

  Value of the polynomial 2x3 + x2 – 5x + 2  

  when  x = 1/2 

  = 2

3

2

1








+

2

2

1






 – 5 








2

1
+2 =

4

1
+

4

1 –
2

5
+ 2 = 0 

  So, 1/2 is a zero of p(x).  

  On putting x = 1 in the cubic polynomial  

   2x3 + x2 – 5x + 2 
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  = 2(1)3 + (1)2 – 5(1) + 2 = 2 + 1 – 5 + 2 = 0 

  On putting x = – 2 in the cubic polynomial  

   2x3 + x2 – 5x + 2 

  = 2(–2)3 + (–2)2
 – 5 (–2) + 2  

  = – 16 + 4 + 10 + 2 = 0  

  Hence, 
2

1
, 1, – 2 are the zeroes of the given 

polynomial. 

  Sum of the zeroes of p(x)  

  = 
2

1
 + 1 – 2 = – 

2

1
 = 

3

2

xoftcoefficien

xoftcoefficien
 

  Sum of the products of two zeroes taken at a 

time 

  = 
2

1
 × 1 + 

2

1
 × (–2) + 1 × (–2)  

  = 
2

1 – 1 – 2 = –
2

5
 = 

3xoftcoefficien

xoftcoefficien
 

  Product of all the three zeroes    

        = 







2

1
× (1) × (–2) = –1 

  =
2

)2(
=

3xoftcoefficien

termttancons
  

 
 

SYMMETRIC FUNCTIONS OF ZEROS OF A 

QUADRATIC POLYNOMIAL. 
 

 Symmetric function :  

 An algebraic expression in  and , which 

remains unchanged, when  and  are 

interchanged is known as symmetric function in  

and . 

 For example, 2 + 2 and 3 + 3 etc. are 

symmetric functions. Symmetric function is to be 

expressed in terms of ( + ) and . So, this can 

be evaluated for a given quadratic equation.  

 Some useful relations involving  and  : 

 1. 2 + 2 = ( + )2 – 2 

 2.  ( – )2 = ( + )2 – 4 

 3. 2 – 2 = (+ ) ( – ) = ( + ) 

   4)( 2  

 4.  3 + 3 = ( + )3 – 3 ( + ) 

 5.  3 – 3 = ( – )3 + 3 ( – )  

 6.  4
 + 4

 =[( + )
2
 – 2]

2
 –2()

2
 

 7.  4
 – 4

 = (2
 + 2

) (2
 – 2

) then use (1) and (3) 

 EXAMPLES  

Ex.16 If  and  are the zeroes of the polynomial  
ax2 + bx + c. Find the value of  

  (i)  –    (ii) 2 + 2. 

Sol.  Since  and  are the zeroes of the 
polynomial ax2 + bx + c. 

    +  = – 
a

b
;   = 

a

c
 

  (i) ( – )2 = ( + )2 – 4  

   = 

2

a

b






  – 

a

c4
  = 

2

2

a

b
 – 

a

c4
 = 

2

2

a

ac4b 
  

    – = 
a

ac4b2 
  

  (ii) 2 + 2 = 2 + 2 + 2 – 2  

   = ( + )2 – 2 

   = 

2

a

b






  – 2 








a

c
 = 

2

2

a

ac2b 
   

Ex.17 If  and  are the zeroes of the quadratic 
polynomial ax2 + bx + c. Find the value of  

  (i) 2 – 2   (ii) 3 + 3. 

Sol.  Since  and  are the zeroes of ax2 + bx + c 

    +  = 
a

b
,  = 

a

c
  

  (i) 2 – 2 = ( + ) (– )  

   = –
a

b
 4)( 2  

   = – 
a

b

a

c
4

a

b
2







 

 = – 
a

b
2

2

a

ac4b 
   

   = – 
2

2

a

ac4bb 
  

  (ii) 3 + 3 = ( + ) (2 + 2 – )  

   = ( + ) [(2 + 2 + 2) – 3] 

   = ( + ) [( + )2 – 3]  
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   = 

a

b



















 

a

c3

a

b
2

    

   =
a

b














a

c3

a

b
2

2

=
a

b









 
2

2

a

ac3b
 

   =
3

3

a

abc3b 
 

 
TO FORM A QUADRATIC POLYNOMIAL 

WITH THE GIVEN ZEROES 

 

     Let zeroes of a quadratic polynomial be  and . 

 x = ,     x =  

        x –  = 0, x – = 0 

    The obviously the quadratic polynomial is  

         (x – ) (x – ) 

     i.e.,    x2 – ( + ) x +  

  zeroestheofoductPrx)zeroestheofSum(x
2   

  

 EXAMPLES  

Ex.18 Form the quadratic polynomial whose zeroes 

are 4 and 6.   

Sol.  Sum of the zeroes = 4 + 6 = 10 

  Product of the zeroes = 4 × 6 = 24 

  Hence the polynomial formed 

  = x2 – (sum of zeroes) x + Product of zeroes 

  = x2 – 10x + 24 

Ex.19 Form the quadratic polynomial whose zeroes 

are –3, 5. 

Sol.  Here, zeroes are – 3 and 5. 

  Sum of the zeroes = – 3 + 5 = 2 

  Product of the zeroes = (–3) × 5 = – 15 

  Hence the polynomial formed  

  = x2 – (sum of zeroes) x + Product of zeroes 

  = x2 – 2x – 15 

Ex.20 Find a quadratic polynomial whose sum of 

zeroes and product of zeroes are respectively- 

  (i) 
4

1
, – 1 (ii) 2 ,

3

1
     (iii) 0, 5   

Sol.  Let the polynomial be ax2 + bx + c and its 

zeroes be  and .    

  (i) Here,  +  = 
4

1
 and  .  = – 1 

   Thus the polynomial formed 

   = x2 – (Sum of zeroes) x + Product of zeroes 

   = x2 – 







4

1
 x – 1 = x2 – 

4

x
 – 1 

   The other polynomial are k 





  1

4

x
x 2  

   If k = 4, then the polynomial is 4x2 – x – 4. 

  (ii) Here,  + = 2 ,  = 
3

1
    

   Thus the polynomial formed 

   = x2 – (Sum of zeroes) x + Product of 

zeroes 

   = x2 – ( 2 ) x + 
3

1
  or   x2 – 2 x + 

3

1
 

   Other polynomial are k 





 

3

1
x2x2   

   If k = 3, then the polynomial is  

   3x2 – 3 2 x + 1 

  (iii) Here,  +  = 0 and     . = 5  

   Thus the polynomial formed  

   = x2 – (Sum of zeroes) x + Product of 

zeroes  

   = x2 – (0) x + 5  = x2 + 5   

Ex.21 Find a cubic polynomial with the sum of its 

zeroes, sum of the products of its zeroes taken 

two at a time, and product of its zeroes as 2,  

– 7 and –14, respectively. 

Sol.  Let the cubic polynomial be  

  ax3 + bx2 + cx + d 

   x3 + 
a

b
 x2 +

a

c
 x + 

a

d
   ....(1) 

  and its zeroes are ,  and , then  

   +  +  = 2 = – 
a

b
  

   +  +  = – 7 = 
a

c
 

   = – 14 = – 
a

d
  



  Polynomials                                   27 

  Putting the values of 
a

b
, 

a

c
 and 

a

d
 in (1),  

  we get  

  x3 + (–2) x2 + (–7)x + 14 

   x3 – 2x2 – 7x + 14  

Ex.22 Find the cubic polynomial with the sum, sum 

of the product of its zeroes taken two at a 

time and product of its zeroes as 0, –7 and –6 

respectively. 

Sol.  Let the cubic polynomial be   

  ax3 + bx2 + cx + d 

   x3 + 
a

b
x2 + 

a

c
 x + 

a

d
     ....(1) 

  and its zeroes are , , . Then  

   +  +  = 0 = – 
a

b
 

   +  +  = – 7 = 
a

c
  

   = – 6 = 
a

d
 

  Putting the values of 
a

b
, 

a

c
 and 

a

d
 in (1),  

  we get  

   x3 – (0) x2 + (–7) x + (–6)  

  or x3 – 7x + 6 

Ex.23 If  and  are the zeroes of the polynomials  

ax2 + bx + c then form the polynomial whose 

zeroes are 

1

 and 

1

. 

Sol.  Since  and  are the zeroes of ax2 + bx + c  

  So  +  = 
a

b
,  = 

a

c
  

  Sum of the zeroes = 

1

+ 

1

 = 



   

  = 

a

c
a

b


 = 
c

b
     

  Product of the zeroes  

  = 

1

.
1

 =

a

c

1
= 

c

a
  

  But required polynomial is  

  x2 – (sum of zeroes) x + Product of zeroes 

   x2 – 





 

c

b
 x + 








c

a
  

  or  x2 + 
c

b
 x + 

c

a
  

  or c 





 

c

a
x

c

b
x2  

   cx2 + bx + a 

Ex.24 If  and  are the zeroes of the polynomial  
x2 + 4x + 3, form the polynomial whose 

zeroes are 1 + 



 and 1 + 



.   

Sol.  Since  and  are the zeroes of the 
polynomial x2  + 4x + 3.  

  Then,   +  = – 4,   = 3 

  Sum of the zeroes  

  = 1 + 



 + 1 + 



 = 


 22

  

  = 


 222

 = 

 2)(

 = 
3

)4( 2
 = 

3

16
  

  Product of the zeroes  

  = 










1 










1  = 1 + 



 + 



 + 



  

  = 2 + 

 22

 = 


 222
  

  = 

 2)(

 = 
3

)4( 2
 = 

3

16
   

  But required polynomial is  

  x2 – (sum of zeroes) x + product of zeroes 

  or  x2 – 
3

16
 x +  

3

16
   or  k 






 

3

16
x

3

16
x 2  

  or  3 





 

3

16
x

3

16
x 2     (if  k = 3) 

   3x2 – 16x + 16       
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
 

WORKING RULE TO DIVIDE A POLYNOMIAL 

BY ANOTHER POLYNOMIAL 
   

Step 1:   

 First arrange the term of dividend and the divisor 

in the decreasing order of their degrees. 

Step 2 :  

 To obtain the first term of quotient divide the 

highest degree term of the dividend by the highest 

degree term of the divisor. 

Step 3 :  

 To obtain the second term of the quotient, divide 

the highest degree term of the new dividend 

obtained as remainder by the highest degree term 

of the divisor. 

Step 4 :  

 Continue this process till the degree of remainder 

is less than the degree of divisor. 

 Division Algorithm for Polynomial 

 If p(x) and g(x) are any two polynomials with  

 g(x)  0, then we can find polynomials q(x) and 

r(x) such that  

 p(x) = q(x) × g(x) + r(x) 

 where r(x) = 0 or degree of r(x) < degree of g(x). 

 The result is called Division Algorithm for 

polynomials.        

 mainderReDivisorQuotientDividend   

 EXAMPLES  

Ex.25 Divide 3x3 + 16x2 + 21x + 20  by  x + 4. 

Sol.   

 3x
2
 + 4x + 5 

3x
3
 + 16x

2
 + 21x + 20 

3x
3
 + 12x

2 

– 
       – 

4x
2
 + 21x + 20 

4x
2
 + 16x 

–     – 
5x + 20 

5x + 20 

–   – 

0 

First term of q(x) =
x

x3 3

= 3x
2
 

Second term of q(x) =
x

x4 2

= 4x 

Third term of q(x) =
x

x5
 = 5 

x+4 

            

  Quotient = 3x2 + 4x + 5 

  Remainder = 0 

Ex.26 Apply the division algorithm to find the 

quotient and remainder on dividing p(x) by 

g(x) as given below : 

  p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2  

Sol.  We have,  

  p(x) = x3 – 3x2 + 5x – 3 and g(x) = x2 – 2 

 x – 3 

x
3
 – 3x

2
 + 5x – 3 

x
3
          – 2x

 

–                  
+  

– 3x
2
 + 7x – 3 

– 3x
2
         + 6 

+               –  

    7x – 9 

First term of quotient is 
2

3

x

x
= x 

Second term of quotient is
2

2

x

x3
= –3 

 

x
2–2 

   

  We stop here since   

  degree of (7x – 9) < degree of (x2 – 2) 

  So, quotient = x – 3, remainder = 7x – 9 

  Therefore,  

  Quotient × Divisor + Remainder 

    = (x – 3) (x2 – 2) + 7x – 9 

    =  x3 – 2x – 3x2 + 6 + 7x – 9 

    = x3 – 3x2 + 5x – 3 = Dividend 

  Therefore, the division algorithm is verified. 

Ex.27 Apply the division algorithm to find the 

quotient and remainder on dividing p(x) by 

g(x) as given below  

  p(x) = x4 – 3x2 + 4x + 5, g (x) = x2 + 1 – x 

Sol.  We have, 

  p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x 
 

              

 x
2
 + x – 3 

x
4
 – 3x

2
 + 4x + 5 

x
4
 – x

3 
+ x

2 

– 
  
+

      – 

x
3
 – 4x

2
 + 4x + 5 

x
3
  –  x

2
  + x 

–    +       –     

–3x
2 + 3x + 5 

– 3x
2

 + 3x – 3 

+       –      +  

8 

x
2 – x + 1 
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  We stop here since  

  degree of (8) < degree of (x2 – x + 1). 

  So, quotient = x2 + x – 3, remainder = 8 

  Therefore,  

  Quotient × Divisor + Remainder 

  = (x2 + x – 3) (x2 – x + 1) + 8 

  = x4 – x3 + x2 + x3 – x2 + x – 3x2 + 3x – 3 + 8 

  = x4 – 3x2 + 4x + 5  = Dividend  

  Therefore the Division Algorithm is verified. 

Ex.28 Check whether the first polynomial is a factor of 

the second polynomial by applying the division 

algorithm.t2 – 3; 2t4 + 3t3 – 2t2 – 9t – 12. 

Sol.  We divide 2t4 + 3t3 – 2t2 – 9t – 12 by t2 – 3 

 2t
2
 + 3t + 4 

2t
4
 + 3t

3
 – 2t

2
 – 9t – 12 

2t
4
          – 6t

2 

– 
                  

+
     

 

3t
3
 + 4t

2
 + 9t – 12 

3t
3
                  – 9t 

–                          +            

4t
2
            – 12 

4t
2
            – 12 

–              + 

 0 

t
2
 – 3 

 

  Here, remainder is 0, so t2 – 3 is a factor of  

2t4 + 3t3 – 2t2 – 9t – 12. 

  2t4 + 3t3 – 2t2 – 9t – 12 = (2t2 + 3t + 4) (t2 – 3) 

Ex.29 Obtain all the zeroes of  

  3x4
 + 6x3

 – 2x2
 – 10x – 5, if two of its zeroes 

are 
3

5
 and – 

3

5
. 

Sol.  Since two zeroes are 
3

5
 and –

3

5
, 

  x = 
3

5
, x = –

3

5
  

   











3

5
x 












3

5
x  = x2 – 

3

5
 or 3x2 – 5 

is a factor of the given polynomial. 

  Now, we apply the division algorithm to the 

given polynomial and 3x2 – 5. 

              

 x
2
 + 2x + 1 

3x
4
 + 6x

3
 – 2x

2
 – 10x – 5 

3x
4
           – 5x

2 

– 
     

          +
     

 

6x
3
 + 3x

2
 – 10x – 5 

6x
3
          – 10x 

–              + 

3x
2
           – 5 

3x
2
           – 5 

–                 + 

 0 

3x
2
 – 5 

 

  So,  3x4 + 6x3 – 2x2 – 10x – 5  

   = (3x2 – 5) (x2 + 2x + 1) + 0 

  Quotient = x2 + 2x + 1 = (x + 1)2 

  Zeroes of (x + 1)2 are –1, –1. 

  Hence, all its zeroes are 
3

5
, – 

3

5
, –1, –1. 

Ex.30 On dividing x3 – 3x2 + x + 2 by a polynomial  

g(x), the quotient and remainder were x – 2 

and –2x + 4, respectively. Find g(x). 

Sol.  p(x) = x3 – 3x2 + x + 2 

  q(x) = x – 2 and r (x) = –2x + 4 

  By Division Algorithm, we know that  

   p(x) = q(x) × g(x) + r(x) 

  Therefore,  

  x3 – 3x2 + x + 2 = (x – 2) × g(x) + (–2x + 4)  

   x3 – 3x2 + x + 2 + 2x – 4 = (x – 2) × g(x) 

   g(x) = 
2x

2x3x3x 23




 

  On dividing x3
 – 3x2

 + 3x – 2 by x – 2,  

we get g(x)  

 x
2
 – x + 1 

x
3
 – 3x

2
 + 3x – 2 

x
3
 – 2x

2 

– 
  
+  

–x
2
 + 3x – 2 

–x
2
 + 2x 

+     – 

x  – 2 

x  – 2 

–  + 

0 

First term of quotient is
x

x
3

= x 

Second term of quotient is
x

x
2

= –x 

Third term of quotient is 
x

x
 = 1 

x–2 

 

  Hence, g(x) = x2 – x + 1.     
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Ex.31 Give examples of polynomials p(x), q(x) and 

r(x), which satisfy the division algorithm and  

  (i) deg p(x) = deg q(x)  

  (ii) deg q(x) = deg r(x) 

  (iii) deg q(x) = 0 

Sol. (i)  Let q(x) = 3x2 + 2x + 6, degree of q(x) = 2 

  p(x) = 12x2 + 8x + 24, degree of p(x) = 2 

  Here, deg p(x) = deg q(x) 

 (ii) p(x) = x5 + 2x4 + 3x3 + 5x2 + 2 

  q(x) = x2 + x + 1,  degree of q(x) = 2 

  g(x) = x3 + x2 + x + 1 

  r(x) = 2x2 – 2x + 1,  degree of r(x) = 2 

  Here, deg q(x) = deg r(x) 

 (iii) Let p(x) = 2x4 + 8x3 + 6x2 + 4x + 12 

  q(x) = 2, degree of q(x) = 0 

  g(x) = x4 + 4x3 + 3x2
 + 2x + 6 

  r(x) = 0 

  Here, deg q(x) = 0 

Ex.32 If the zeroes of polynomial x
3
 – 3x

2
 + x + 1 

are a – b, a , a + b. Find a and b.
   

Sol.   a – b, a, a + b are zeros 

   product (a – b) a(a + b) = –1 

    (a
2
 – b

2
) a = –1  …(1) 

  and sum of zeroes is (a – b) + a + (a + b) = 3 

   3a = 3  a = 1 …(2) 

  by (1) and (2) 

  (1 – b
2
)1 = –1 

   2 = b
2
  b = ± 2  

   a = –1 & b = ± 2   Ans. 

Ex.33 If two zeroes of the polynomial  

  x
4
 – 6x

3
 –26x

2
 + 138x – 35 are 2 ± 3 ,  

find other zeroes.  

Sol.    2 ± 3 are zeroes.  

    x = 2 ± 3  

    x – 2 = ± 3 (squaring both sides)  

    (x – 2)
2
 = 3   x

2
 + 4 – 4x – 3 = 0 

    x
2
 – 4x + 1 = 0 , is a factor of given 

polynomial 

   other factors  

  = 
1x4x

35x138x26x6x
2

234




 

  

 

x
2
 – 4x + 1 

x
2
 – 2x – 35 

x
4
 – 6x

3
 – 26x

2
 + 138x – 35 

x
4
 – 4x

3
 +    x

2
 

– 2x
3
 – 27x

2
 + 138x – 35 

+ – – 

– 2x
3
 +  8x

2
  –     2x 

+ + – 

– 35x
2
 + 140x – 35 

– 35x
2
 + 140x – 35 

+ + – 
×   

   other factors = x
2
 – 2x – 35 

   = x
2
 – 7x + 5x – 35 = x(x – 7) + 5(x – 7) 

   = (x – 7) (x + 5) 

   other zeroes are (x – 7) = 0  x = 7 

   x + 5 = 0  x = – 5  Ans. 

Ex.34 If the polynomial x
4
 – 6x

3
 + 16x

2
 –25x + 10 is 

divided by another  polynomial x
2
 –2x + k, the 

remainder comes out to be x + a, find k & a. 

Sol.      

 

 

x
2
 – 2x + k 

x
2
 – 4x + (8 – k) 

x
4
 – 6x

3
 + 16x

2
 – 25x + 10 

x
4
 – 2x

3
 + x

2
k 

– 4x
3
 + x

2
 (16 – k)– 25x + 10 

+ – – 

– 4x
3
 +  x

2
 (8)      –    4xk 

+ + – 

x
2
 [8 – k] + x[4k– 25] + 10 

– – + 
x

2
 [8 – k] – 2x[8 – k] +k(8 – k) 

x [4k – 25 + 16 – 2k] + 10 – 8k + k
2
  

  According to questions, remainder is x + a 

   coefficient of x = 1 

   2k  – 9 = 1 

   k = (10/2) = 5 

  Also constant term = a 

   k
2
 – 8k + 10 = a  (5)

2
 – 8(5) + 10 = a 

   a = 25 – 40 + 10 

   a = – 5  

   k = 5, a = –5   Ans.  
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